Skip to main content

2. Constrained Application Protocol

The interaction model of CoAP is similar to the client/server model of HTTP. However, machine-to-machine interactions typically result in a CoAP implementation acting in both client and server roles. A CoAP request is equivalent to that of HTTP and is sent by a client to request an action (using a Method Code) on a resource (identified by a URI) on a server. The server then sends a response with a Response Code; this response may include a resource representation.

Unlike HTTP, CoAP deals with these interchanges asynchronously over a datagram-oriented transport such as UDP. This is done logically using a layer of messages that supports optional reliability (with exponential back-off). CoAP defines four types of messages: Confirmable, Non-confirmable, Acknowledgement, Reset. Method Codes and Response Codes included in some of these messages make them carry requests or responses. The basic exchanges of the four types of messages are somewhat orthogonal to the request/response interactions; requests can be carried in Confirmable and Non-confirmable messages, and responses can be carried in these as well as piggybacked in Acknowledgement messages.

One could think of CoAP logically as using a two-layer approach, a CoAP messaging layer used to deal with UDP and the asynchronous nature of the interactions, and the request/response interactions using Method and Response Codes (see Figure 1). CoAP is however a single protocol, with messaging and request/response as just features of the CoAP header.

                    +----------------------+
| Application |
+----------------------+
+----------------------+ \
| Requests/Responses | |
|----------------------| | CoAP
| Messages | |
+----------------------+ /
+----------------------+
| UDP |
+----------------------+

Figure 1: Abstract Layering of CoAP

2.1. Messaging Model

The CoAP messaging model is based on the exchange of messages over UDP between endpoints.

CoAP uses a short fixed-length binary header (4 bytes) that may be followed by compact binary options and a payload. This message format is shared by requests and responses. The CoAP message format is specified in Section 3. Each message contains a Message ID used to detect duplicates and for optional reliability. (The Message ID is compact; its 16-bit size enables up to about 250 messages per second from one endpoint to another with default protocol parameters.)

Reliability is provided by marking a message as Confirmable (CON). A Confirmable message is retransmitted using a default timeout and exponential back-off between retransmissions, until the recipient sends an Acknowledgement message (ACK) with the same Message ID (in this example, 0x7d34) from the corresponding endpoint; see Figure 2. When a recipient is not at all able to process a Confirmable message (i.e., not even able to provide a suitable error response), it replies with a Reset message (RST) instead of an Acknowledgement (ACK).

                    Client              Server
| |
| CON [0x7d34] |
+----------------->|
| |
| ACK [0x7d34] |
|<-----------------+
| |

Figure 2: Reliable Message Transmission

A message that does not require reliable transmission (for example, each single measurement out of a stream of sensor data) can be sent as a Non-confirmable message (NON). These are not acknowledged, but still have a Message ID for duplicate detection (in this example, 0x01a0); see Figure 3. When a recipient is not able to process a Non-confirmable message, it may reply with a Reset message (RST).

                    Client              Server
| |
| NON [0x01a0] |
+----------------->|
| |

Figure 3: Unreliable Message Transmission

See Section 4 for details of CoAP messages.

As CoAP runs over UDP, it also supports the use of multicast IP destination addresses, enabling multicast CoAP requests. Section 8 discusses the proper use of CoAP messages with multicast addresses and precautions for avoiding response congestion.

Several security modes are defined for CoAP in Section 9 ranging from no security to certificate-based security. This document specifies a binding to DTLS for securing the protocol; the use of IPsec with CoAP is discussed in [IPsec-CoAP].

2.2. Request/Response Model

CoAP request and response semantics are carried in CoAP messages, which include either a Method Code or Response Code, respectively. Optional (or default) request and response information, such as the URI and payload media type are carried as CoAP options. A Token is used to match responses to requests independently from the underlying messages (Section 5.3). (Note that the Token is a concept separate from the Message ID.)

A request is carried in a Confirmable (CON) or Non-confirmable (NON) message, and, if immediately available, the response to a request carried in a Confirmable message is carried in the resulting Acknowledgement (ACK) message. This is called a piggybacked response, detailed in Section 5.2.1. (There is no need for separately acknowledging a piggybacked response, as the client will retransmit the request if the Acknowledgement message carrying the piggybacked response is lost.) Two examples for a basic GET request with piggybacked response are shown in Figure 4, one successful, one resulting in a 4.04 (Not Found) response.

    Client              Server       Client              Server
| | | |
| CON [0xbc90] | | CON [0xbc91] |
| GET /temperature | | GET /temperature |
| (Token 0x71) | | (Token 0x72) |
+----------------->| +----------------->|
| | | |
| ACK [0xbc90] | | ACK [0xbc91] |
| 2.05 Content | | 4.04 Not Found |
| (Token 0x71) | | (Token 0x72) |
| "22.5 C" | | "Not found" |
|<-----------------+ |<-----------------+
| | | |

Figure 4: Two GET Requests with Piggybacked Responses

If the server is not able to respond immediately to a request carried in a Confirmable message, it simply responds with an Empty Acknowledgement message so that the client can stop retransmitting the request. When the response is ready, the server sends it in a new Confirmable message (which then in turn needs to be acknowledged by the client). This is called a "separate response", as illustrated in Figure 5 and described in more detail in Section 5.2.2.

                    Client              Server
| |
| CON [0x7a10] |
| GET /temperature |
| (Token 0x73) |
+----------------->|
| |
| ACK [0x7a10] |
|<-----------------+
| |
... Time Passes ...
| |
| CON [0x23bb] |
| 2.05 Content |
| (Token 0x73) |
| "22.5 C" |
|<-----------------+
| |
| ACK [0x23bb] |
+----------------->|
| |

Figure 5: A GET Request with a Separate Response

If a request is sent in a Non-confirmable message, then the response is sent using a new Non-confirmable message, although the server may instead send a Confirmable message. This type of exchange is illustrated in Figure 6.

                    Client              Server
| |
| NON [0x7a11] |
| GET /temperature |
| (Token 0x74) |
+----------------->|
| |
| NON [0x23bc] |
| 2.05 Content |
| (Token 0x74) |
| "22.5 C" |
|<-----------------+
| |

Figure 6: A Request and a Response Carried in Non-confirmable Messages

CoAP makes use of GET, PUT, POST, and DELETE methods in a similar manner to HTTP, with the semantics specified in Section 5.8. (Note that the detailed semantics of CoAP methods are "almost, but not entirely unlike" [HHGTTG] those of HTTP methods: intuition taken from HTTP experience generally does apply well, but there are enough differences that make it worthwhile to actually read the present specification.)

Methods beyond the basic four can be added to CoAP in separate specifications. New methods do not necessarily have to use requests and responses in pairs. Even for existing methods, a single request may yield multiple responses, e.g., for a multicast request (Section 8) or with the Observe option [OBSERVE].

URI support in a server is simplified as the client already parses the URI and splits it into host, port, path, and query components, making use of default values for efficiency. Response Codes relate to a small subset of HTTP status codes with a few CoAP-specific codes added, as defined in Section 5.9.

2.3. Intermediaries and Caching

The protocol supports the caching of responses in order to efficiently fulfill requests. Simple caching is enabled using freshness and validity information carried with CoAP responses. A cache could be located in an endpoint or an intermediary. Caching functionality is specified in Section 5.6.

Proxying is useful in constrained networks for several reasons, including to limit network traffic, to improve performance, to access resources of sleeping devices, and for security reasons. The proxying of requests on behalf of another CoAP endpoint is supported in the protocol. When using a proxy, the URI of the resource to request is included in the request, while the destination IP address is set to the address of the proxy. See Section 5.7 for more information on proxy functionality.

As CoAP was designed according to the REST architecture [REST], and thus exhibits functionality similar to that of the HTTP protocol, it is quite straightforward to map from CoAP to HTTP and from HTTP to CoAP. Such a mapping may be used to realize an HTTP REST interface using CoAP or to convert between HTTP and CoAP. This conversion can be carried out by a cross-protocol proxy ("cross-proxy"), which converts the Method or Response Code, media type, and options to the corresponding HTTP feature and vice versa. Section 10 provides more details on HTTP mapping.

2.4. Resource Discovery

Resource discovery is important for machine-to-machine interactions and is supported using the CoRE Link Format [RFC6690] that is discussed in Section 7.