Skip to main content

2. The PATCH Method

2. The PATCH Method

The PATCH method requests that a set of changes described in the request entity be applied to the resource identified by the Request-URI. The set of changes is represented in a format called a "patch document" identified by a media type. If the Request-URI does not point to an existing resource, the server MAY create a new resource, depending on the patch document type (whether it can logically modify a null resource) and permissions, etc.

The difference between the PUT and PATCH requests is reflected in the way the server processes the enclosed entity to modify the resource identified by the Request-URI. In a PUT request, the enclosed entity is considered to be a modified version of the resource stored on the origin server, and the client is requesting that the stored version be replaced. With PATCH, however, the enclosed entity contains a set of instructions describing how a resource currently residing on the origin server should be modified to produce a new version. The PATCH method affects the resource identified by the Request-URI, and it also MAY have side effects on other resources; i.e., new resources may be created, or existing ones modified, by the application of a PATCH.

PATCH is neither safe nor idempotent as defined by [RFC2616], Section 9.1.

A PATCH request can be issued in such a way as to be idempotent, which also helps prevent bad outcomes from collisions between two PATCH requests on the same resource in a similar time frame. Collisions from multiple PATCH requests may be more dangerous than PUT collisions because some patch formats need to operate from a known base-point or else they will corrupt the resource. Clients using this kind of patch application SHOULD use a conditional request such that the request will fail if the resource has been updated since the client last accessed the resource. For example, the client can use a strong ETag [RFC2616] in an If-Match header on the PATCH request.

There are also cases where patch formats do not need to operate from a known base-point (e.g., appending text lines to log files, or non-colliding rows to database tables), in which case the same care in client requests is not needed.

The server MUST apply the entire set of changes atomically and never provide (e.g., in response to a GET during this operation) a partially modified representation. If the entire patch document cannot be successfully applied, then the server MUST NOT apply any of the changes. The determination of what constitutes a successful PATCH can vary depending on the patch document and the type of resource(s) being modified. For example, the common 'diff' utility can generate a patch document that applies to multiple files in a directory hierarchy. The atomicity requirement holds for all the files affected by the patch, not just one of them. See "Error Handling", Section 2.2, for details on status codes and possible error conditions.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities, those entries SHOULD be treated as stale. A response to this method is only cacheable if it contains explicit freshness information (such as an Expires header or "Cache-Control: max-age" directive) as well as the Content-Location header matching the Request-URI, indicating that the PATCH response body is a resource representation. A cached PATCH response can only be used to respond to subsequent GET and HEAD requests; it MUST NOT be used to respond to other methods (such as PATCH).

Note that entity-headers contained in the request apply only to the contained patch document and MUST NOT be applied to the resource being modified. Thus, a Content-Language header could be present on the request, but it would only mean (for whatever that's worth) that the patch document had a language. Servers SHOULD NOT store such headers except as trace information, and SHOULD NOT use such header values the same way they might be used on PUT requests. Therefore, this document does not specify a way to modify a document's Content-Type or Content-Language value through headers, though a mechanism could well be designed to achieve this goal through a patch document.

There is no guarantee that a resource can be modified with PATCH. Further, it is expected that different patch document formats will be appropriate for different types of resources and that no single format will be appropriate for all types of resources. Therefore, there is no single default patch document format that implementations are required to support. Servers MUST ensure that a received patch document is appropriate for the type of resource identified by the target Request-URI.

Clients need to choose when to use PATCH rather than PUT. For example, if the patch document size is larger than the size of the new resource data that would be used in a PUT, then it might make sense to use PUT instead of PATCH. A comparison to POST is even more difficult, because POST is used in widely varying ways and can encompass PUT and PATCH-like operations if the server chooses. If the operation does not modify the resource identified by the Request-URI in a predictable way, POST should be considered instead of PATCH or PUT.