Skip to main content

6. Resolver Considerations

A security-aware resolver has to be able to perform cryptographic functions necessary to verify digital signatures using at least the mandatory-to-implement algorithm(s). Security-aware resolvers must also be capable of forming an authentication chain from a newly learned zone back to an authentication key, as described above. This process might require additional queries to intermediate DNS zones to obtain necessary DNSKEY, DS, and RRSIG records. A security-aware resolver should be configured with at least one trust anchor as the starting point from which it will attempt to establish authentication chains.

If a security-aware resolver is separated from the relevant authoritative name servers by a recursive name server or by any sort of intermediary device that acts as a proxy for DNS, and if the recursive name server or intermediary device is not security-aware, the security-aware resolver may not be capable of operating in a secure mode. For example, if a security-aware resolver's packets are routed through a network address translation (NAT) device that includes a DNS proxy that is not security-aware, the security-aware resolver may find it difficult or impossible to obtain or validate signed DNS data. The security-aware resolver may have a particularly difficult time obtaining DS RRs in such a case, as DS RRs do not follow the usual DNS rules for ownership of RRs at zone cuts. Note that this problem is not specific to NATs: any security-oblivious DNS software of any kind between the security-aware resolver and the authoritative name servers will interfere with DNSSEC.

If a security-aware resolver must rely on an unsigned zone or a name server that is not security aware, the resolver may not be able to validate DNS responses and will need a local policy on whether to accept unverified responses.

A security-aware resolver should take a signature's validation period into consideration when determining the TTL of data in its cache, to avoid caching signed data beyond the validity period of the signature. However, it should also allow for the possibility that the security-aware resolver's own clock is wrong. Thus, a security-aware resolver that is part of a security-aware recursive name server will have to pay careful attention to the DNSSEC "checking disabled" (CD) bit ([RFC4034]). This is in order to avoid blocking valid signatures from getting through to other security-aware resolvers that are clients of this recursive name server. See [RFC4035] for how a secure recursive server handles queries with the CD bit set.