2. The Link State Database
-
The Link-state Database: organization and calculations
The following subsections describe the organization of OSPF's link- state database, and the routing calculations that are performed on the database in order to produce a router's routing table.
2.1. Representation of routers and networks
The Autonomous System's link-state database describes a directed graph. The vertices of the graph consist of routers and networks. A graph edge connects two routers when they are attached via a physical point-to-point network. An edge connecting a router to a network indicates that the router has an interface on the network. Networks can be either transit or stub networks. Transit networks are those capable of carrying data traffic that is neither locally originated nor locally destined. A transit network is represented by a graph vertex having both incoming and outgoing edges. A stub network's vertex has only incoming edges.
The neighborhood of each network node in the graph depends on the network's type (point-to-point, broadcast, NBMA or Point- to-MultiPoint) and the number of routers having an interface to the network. Three cases are depicted in Figure 1a. Rectangles indicate routers. Circles and oblongs indicate networks. Router names are prefixed with the letters RT and network names with the letter N. Router interface names are prefixed by the letter I. Lines between routers indicate point-to-point networks. The left side of the figure shows networks with their connected routers, with the resulting graphs shown on the right.
FROM
- |RT1|RT2| +---+Ia +---+ * ------------ |RT1|------|RT2| T RT1| | X | +---+ Ib+---+ O RT2| X | |
- Ia| | X |
- Ib| X | |
Physical point-to-point networks
FROM +---+ * |RT7| * |RT7| N3| +---+ T ------------ | O RT7| | | +----------------------+ * N3| X | | N3 *
Stub networks
FROM +---+ +---+ |RT3| |RT4| |RT3|RT4|RT5|RT6|N2 | +---+ +---+ * ------------------------ | N2 | * RT3| | | | | X | +----------------------+ T RT4| | | | | X | | | O RT5| | | | | X | +---+ +---+ * RT6| | | | | X | |RT5| |RT6| * N2| X | X | X | X | | +---+ +---+
Broadcast or NBMA networks
Figure 1a: Network map components
Networks and routers are represented by vertices. An edge connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X.
The top of Figure 1a shows two routers connected by a point-to- point link. In the resulting link-state database graph, the two router vertices are directly connected by a pair of edges, one in each direction. Interfaces to point-to-point networks need not be assigned IP addresses. When interface addresses are assigned, they are modelled as stub links, with each router advertising a stub connection to the other router's interface address. Optionally, an IP subnet can be assigned to the point- to-point network. In this case, both routers advertise a stub link to the IP subnet, instead of advertising each others' IP interface addresses.
The middle of Figure 1a shows a network with only one attached router (i.e., a stub network). In this case, the network appears on the end of a stub connection in the link-state database's graph.
When multiple routers are attached to a broadcast network, the link-state database graph shows all routers bidirectionally connected to the network vertex. This is pictured at the bottom of Figure 1a.
Each network (stub or transit) in the graph has an IP address and associated network mask. The mask indicates the number of nodes on the network. Hosts attached directly to routers (referred to as host routes) appear on the graph as stub networks. The network mask for a host route is always 0xffffffff, which indicates the presence of a single node.
2.1.1. Representation of non-broadcast networks
As mentioned previously, OSPF can run over non-broadcast networks in one of two modes: NBMA or Point-to-MultiPoint. The choice of mode determines the way that the Hello
protocol and flooding work over the non-broadcast network, and the way that the network is represented in the link- state database.
In NBMA mode, OSPF emulates operation over a broadcast network: a Designated Router is elected for the NBMA network, and the Designated Router originates an LSA for the network. The graph representation for broadcast networks and NBMA networks is identical. This representation is pictured in the middle of Figure 1a.
NBMA mode is the most efficient way to run OSPF over non- broadcast networks, both in terms of link-state database size and in terms of the amount of routing protocol traffic. However, it has one significant restriction: it requires all routers attached to the NBMA network to be able to communicate directly. This restriction may be met on some non-broadcast networks, such as an ATM subnet utilizing SVCs. But it is often not met on other non-broadcast networks, such as PVC-only Frame Relay networks. On non- broadcast networks where not all routers can communicate directly you can break the non-broadcast network into logical subnets, with the routers on each subnet being able to communicate directly, and then run each separate subnet as an NBMA network (see [Ref15]). This however requires quite a bit of administrative overhead, and is prone to misconfiguration. It is probably better to run such a non- broadcast network in Point-to-Multipoint mode.
In Point-to-MultiPoint mode, OSPF treats all router-to- router connections over the non-broadcast network as if they were point-to-point links. No Designated Router is elected for the network, nor is there an LSA generated for the network. In fact, a vertex for the Point-to-MultiPoint network does not appear in the graph of the link-state database.
Figure 1b illustrates the link-state database representation of a Point-to-MultiPoint network. On the left side of the figure, a Point-to-MultiPoint network is pictured. It is assumed that all routers can communicate directly, except for routers RT4 and RT5. I3 though I6 indicate the routers'
IP interface addresses on the Point-to-MultiPoint network. In the graphical representation of the link-state database, routers that can communicate directly over the Point-to- MultiPoint network are joined by bidirectional edges, and each router also has a stub connection to its own IP interface address (which is in contrast to the representation of real point-to-point links; see Figure 1a).
On some non-broadcast networks, use of Point-to-MultiPoint mode and data-link protocols such as Inverse ARP (see [Ref14]) will allow autodiscovery of OSPF neighbors even though broadcast support is not available.
FROM +---+ +---+ |RT3| |RT4| |RT3|RT4|RT5|RT6| +---+ +---+ * -------------------- I3| N2 |I4 * RT3| | X | X | X | +----------------------+ T RT4| X | | | X | I5| |I6 O RT5| X | | | X | +---+ +---+ * RT6| X | X | X | | |RT5| |RT6| * I3| X | | | | +---+ +---+ I4| | X | | | I5| | | X | | I6| | | | X |
Figure 1b: Network map components Point-to-MultiPoint networks
All routers can communicate directly over N2, except routers RT4 and RT5. I3 through I6 indicate IP interface addresses
2.1.2. An example link-state database
Figure 2 shows a sample map of an Autonomous System. The rectangle labelled H1 indicates a host, which has a SLIP connection to Router RT12. Router RT12 is therefore advertising a host route. Lines between routers indicate physical point-to-point networks. The only point-to-point network that has been assigned interface addresses is the one joining Routers RT6 and RT10. Routers RT5 and RT7 have BGP connections to other Autonomous Systems. A set of BGP- learned routes have been displayed for both of these routers.
A cost is associated with the output side of each router interface. This cost is configurable by the system administrator. The lower the cost, the more likely the interface is to be used to forward data traffic. Costs are also associated with the externally derived routing data (e.g., the BGP-learned routes).
The directed graph resulting from the map in Figure 2 is depicted in Figure 3. Arcs are labelled with the cost of the corresponding router output interface. Arcs having no labelled cost have a cost of 0. Note that arcs leading from networks to routers always have cost 0; they are significant nonetheless. Note also that the externally derived routing data appears on the graph as stubs.
The link-state database is pieced together from LSAs generated by the routers. In the associated graphical representation, the neighborhood of each router or transit network is represented in a single, separate LSA. Figure 4 shows these LSAs graphically. Router RT12 has an interface to two broadcast networks and a SLIP line to a host. Network N6 is a broadcast network with three attached routers. The cost of all links from Network N6 to its attached routers is 0. Note that the LSA for Network N6 is actually generated by one of the network's attached routers: the router that has been elected Designated Router for the network.
| 3+---+ N12 N14 N1|--|RT1|\ 1 \ N13 / | +---+ \ 8\ |8/8
- \ ____ |/
/ \ 1+---+8 8+---+6
- N3 *---|RT4|------|RT5|--------+ ____/ +---+ +---+ |
- / | |7 | | 3+---+ / | | | N2|--|RT2|/1 |1 |6 | | +---+ +---+8 6+---+ |
- |RT3|--------------|RT6| | +---+ +---+ | |2 Ia|7 | | | | +---------+ | | N4 | | | | | | N11 | | +---------+ | | | | | N12 |3 | |6 2/ +---+ | +---+/ |RT9| | |RT7|---N15 +---+ | +---+ 9 |1 + | |1 |_ | Ib|5 _| / \ 1+----+2 | 3+----+1 / \
- N9 ------|RT11|----|---|RT10|--- N6 * _/ +----+ | +----+ _/ | | | |1 + |1 +--+ 10+----+ N8 +---+ |H1|-----|RT12| |RT8| +--+SLIP +----+ +---+ |2 |4 | | +---------+ +--------+ N10 N7
Figure 2: A sample Autonomous System
FROM
|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT|RT| |1 |2 |3 |4 |5 |6 |7 |8 |9 |10|11|12|N3|N6|N8|N9|
RT1| | | | | | | | | | | | |0 | | | | RT2| | | | | | | | | | | | |0 | | | | RT3| | | | | |6 | | | | | | |0 | | | | RT4| | | | |8 | | | | | | | |0 | | | | RT5| | | |8 | |6 |6 | | | | | | | | | | RT6| | |8 | |7 | | | | |5 | | | | | | | RT7| | | | |6 | | | | | | | | |0 | | |
-
RT8| | | | | | | | | | | | | |0 | | |
-
RT9| | | | | | | | | | | | | | | |0 | T RT10| | | | | |7 | | | | | | | |0 |0 | | O RT11| | | | | | | | | | | | | | |0 |0 |
-
RT12| | | | | | | | | | | | | | | |0 |
-
N1|3 | | | | | | | | | | | | | | | | N2| |3 | | | | | | | | | | | | | | | N3|1 |1 |1 |1 | | | | | | | | | | | | | N4| | |2 | | | | | | | | | | | | | | N6| | | | | | |1 |1 | |1 | | | | | | | N7| | | | | | | |4 | | | | | | | | | N8| | | | | | | | | |3 |2 | | | | | | N9| | | | | | | | |1 | |1 |1 | | | | | N10| | | | | | | | | | | |2 | | | | | N11| | | | | | | | |3 | | | | | | | | N12| | | | |8 | |2 | | | | | | | | | | N13| | | | |8 | | | | | | | | | | | | N14| | | | |8 | | | | | | | | | | | | N15| | | | | | |9 | | | | | | | | | | H1| | | | | | | | | | | |10| | | | |
Figure 3: The resulting directed graph
Networks and routers are represented by vertices. An edge of cost X connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X.
FROM FROM
|RT12|N9|N10|H1| |RT9|RT11|RT12|N9|
-
-------------------- * ----------------------
-
RT12| | | | | * RT9| | | |0 | T N9|1 | | | | T RT11| | | |0 | O N10|2 | | | | O RT12| | | |0 |
-
H1|10 | | | | * N9| | | | |
-
RT12's router-LSA N9's network-LSA
Figure 4: Individual link state components
Networks and routers are represented by vertices. An edge of cost X connects Vertex A to Vertex B iff the intersection of Column A and Row B is marked with an X.
2.2. The shortest-path tree
When no OSPF areas are configured, each router in the Autonomous System has an identical link-state database, leading to an identical graphical representation. A router generates its routing table from this graph by calculating a tree of shortest paths with the router itself as root. Obviously, the shortest- path tree depends on the router doing the calculation. The shortest-path tree for Router RT6 in our example is depicted in Figure 5.
The tree gives the entire path to any destination network or host. However, only the next hop to the destination is used in the forwarding process. Note also that the best route to any router has also been calculated. For the processing of external data, we note the next hop and distance to any router advertising external routes. The resulting routing table for Router RT6 is pictured in Table 2. Note that there is a separate route for each end of a numbered point-to-point network (in this case, the serial line between Routers RT6 and RT10).
Routes to networks belonging to other AS'es (such as N12) appear as dashed lines on the shortest path tree in Figure 5. Use of
RT6(origin) RT5 o------------o-----------o Ib /|\ 6 |\ 7 8/8|8\ |
/ | \ 6|
o | o | \7 N12 o N14 |
N13 2 |
N4 o-----o RT3
/ \ 5 1/ RT10 o-------o Ia / |
RT4 o-----o N3 3| \1 /| | \ N6 RT7 / | N8 o o---------o / | | | /| RT2 o o RT1 | | 2/ |9 / | | |RT8 / | /3 |3 RT11 o o o o / | | | N12 N15 N2 o o N1 1| |4 | | N9 o o N7 /| / | N11 RT9 / |RT12 o--------o-------o o--------o H1 3 | 10 |2 | o N10Figure 5: The SPF tree for Router RT6
Edges that are not marked with a cost have a cost of of zero (these are network-to-router links). Routes to networks N12-N15 are external information that is considered in Section 2.3
Destination Next Hop Distance
N1 RT3 10 N2 RT3 10 N3 RT3 7 N4 RT3 8 Ib * 7 Ia RT10 12 N6 RT10 8 N7 RT10 12 N8 RT10 10 N9 RT10 11 N10 RT10 13 N11 RT10 14 H1 RT10 21
RT5 RT5 6 RT7 RT10 8
Table 2: The portion of Router RT6's routing table listing local destinations.
this externally derived routing information is considered in the next section.
2.3. Use of external routing information
After the tree is created the external routing information is examined. This external routing information may originate from another routing protocol such as BGP, or be statically configured (static routes). Default routes can also be included as part of the Autonomous System's external routing information.
External routing information is flooded unaltered throughout the AS. In our example, all the routers in the Autonomous System know that Router RT7 has two external routes, with metrics 2 and 9.
OSPF supports two types of external metrics. Type 1 external metrics are expressed in the same units as OSPF interface cost
(i.e., in terms of the link state metric). Type 2 external metrics are an order of magnitude larger; any Type 2 metric is considered greater than the cost of any path internal to the AS. Use of Type 2 external metrics assumes that routing between AS'es is the major cost of routing a packet, and eliminates the need for conversion of external costs to internal link state metrics.
As an example of Type 1 external metric processing, suppose that the Routers RT7 and RT5 in Figure 2 are advertising Type 1 external metrics. For each advertised external route, the total cost from Router RT6 is calculated as the sum of the external route's advertised cost and the distance from Router RT6 to the advertising router. When two routers are advertising the same external destination, RT6 picks the advertising router providing the minimum total cost. RT6 then sets the next hop to the external destination equal to the next hop that would be used when routing packets to the chosen advertising router.
In Figure 2, both Router RT5 and RT7 are advertising an external route to destination Network N12. Router RT7 is preferred since it is advertising N12 at a distance of 10 (8+2) to Router RT6, which is better than Router RT5's 14 (6+8). Table 3 shows the entries that are added to the routing table when external routes are examined:
Destination Next Hop Distance
N12 RT10 10 N13 RT5 14 N14 RT5 14 N15 RT10 17
Table 3: The portion of Router RT6's routing table listing external destinations.
Processing of Type 2 external metrics is simpler. The AS boundary router advertising the smallest external metric is
chosen, regardless of the internal distance to the AS boundary router. Suppose in our example both Router RT5 and Router RT7 were advertising Type 2 external routes. Then all traffic destined for Network N12 would be forwarded to Router RT7, since 2 < 8. When several equal-cost Type 2 routes exist, the internal distance to the advertising routers is used to break the tie.
Both Type 1 and Type 2 external metrics can be present in the AS at the same time. In that event, Type 1 external metrics always take precedence.
This section has assumed that packets destined for external destinations are always routed through the advertising AS boundary router. This is not always desirable. For example, suppose in Figure 2 there is an additional router attached to Network N6, called Router RTX. Suppose further that RTX does not participate in OSPF routing, but does exchange BGP information with the AS boundary router RT7. Then, Router RT7 would end up advertising OSPF external routes for all destinations that should be routed to RTX. An extra hop will sometimes be introduced if packets for these destinations need always be routed first to Router RT7 (the advertising router).
To deal with this situation, the OSPF protocol allows an AS boundary router to specify a "forwarding address" in its AS- external-LSAs. In the above example, Router RT7 would specify RTX's IP address as the "forwarding address" for all those destinations whose packets should be routed directly to RTX.
The "forwarding address" has one other application. It enables routers in the Autonomous System's interior to function as "route servers". For example, in Figure 2 the router RT6 could become a route server, gaining external routing information through a combination of static configuration and external routing protocols. RT6 would then start advertising itself as an AS boundary router, and would originate a collection of OSPF AS-external-LSAs. In each AS-external-LSA, Router RT6 would specify the correct Autonomous System exit point to use for the destination through appropriate setting of the LSA's "forwarding address" field.
2.4. Equal-cost multipath
The above discussion has been simplified by considering only a single route to any destination. In reality, if multiple equal-cost routes to a destination exist, they are all discovered and used. This requires no conceptual changes to the algorithm, and its discussion is postponed until we consider the tree-building process in more detail.
With equal cost multipath, a router potentially has several available next hops towards any given destination.