12. Link State Advertisements
- Link State Advertisements (LSAs)
Each router in the Autonomous System originates one or more link state advertisements (LSAs). This memo defines five distinct types of LSAs, which are described in Section 4.3. The collection of LSAs forms the link-state database. Each separate type of LSA has a separate function. Router-LSAs and network-LSAs describe how an area's routers and networks are interconnected. Summary-LSAs provide a way of condensing an area's routing information. AS- external-LSAs provide a way of transparently advertising externally-derived routing information throughout the Autonomous System.
Each LSA begins with a standard 20-byte header. This LSA header is discussed below.
Type Dest Area Path Type Cost Next Adv. Hop(s) Router(s)
N Ib 0 intra-area 16 RT3 * N Ia 0 intra-area 21 RT3 * R RT3 0 intra-area 1 * * R RT10 0 intra-area 16 RT3 * R RT11 0 intra-area 19 RT3 *
N N9-N11,H1 0 inter-area 30 RT3 RT11
Table 14: Changes resulting from an additional virtual link.
12.1. The LSA Header
The LSA header contains the LS type, Link State ID and Advertising Router fields. The combination of these three fields uniquely identifies the LSA.
There may be several instances of an LSA present in the Autonomous System, all at the same time. It must then be determined which instance is more recent. This determination is made by examining the LS sequence, LS checksum and LS age fields. These fields are also contained in the 20-byte LSA header.
Several of the OSPF packet types list LSAs. When the instance is not important, an LSA is referred to by its LS type, Link State ID and Advertising Router (see Link State Request Packets). Otherwise, the LS sequence number, LS age and LS checksum fields must also be referenced.
A detailed explanation of the fields contained in the LSA header follows.
12.1.1. LS age
This field is the age of the LSA in seconds. It should be processed as an unsigned 16-bit integer. It is set to 0 when the LSA is originated. It must be incremented by InfTransDelay on every hop of the flooding procedure. LSAs are also aged as they are held in each router's database.
The age of an LSA is never incremented past MaxAge. LSAs having age MaxAge are not used in the routing table calculation. When an LSA's age first reaches MaxAge, it is reflooded. An LSA of age MaxAge is finally flushed from the database when it is no longer needed to ensure database synchronization. For more information on the aging of LSAs, consult Section 14.
The LS age field is examined when a router receives two instances of an LSA, both having identical LS sequence numbers and LS checksums. An instance of age MaxAge is then
always accepted as most recent; this allows old LSAs to be flushed quickly from the routing domain. Otherwise, if the ages differ by more than MaxAgeDiff, the instance having the smaller age is accepted as most recent.[12] See Section 13.1 for more details.
12.1.2. Options
The Options field in the LSA header indicates which optional capabilities are associated with the LSA. OSPF's optional capabilities are described in Section 4.5. One optional capability is defined by this specification, represented by the E-bit found in the Options field. The unrecognized bits in the Options field should be set to zero.
The E-bit represents OSPF's ExternalRoutingCapability. This bit should be set in all LSAs associated with the backbone, and all LSAs associated with non-stub areas (see Section 3.6). It should also be set in all AS-external-LSAs. It should be reset in all router-LSAs, network-LSAs and summary-LSAs associated with a stub area. For all LSAs, the setting of the E-bit is for informational purposes only; it does not affect the routing table calculation.
12.1.3. LS type
The LS type field dictates the format and function of the LSA. LSAs of different types have different names (e.g., router-LSAs or network-LSAs). All LSA types defined by this memo, except the AS-external-LSAs (LS type = 5), are flooded throughout a single area only. AS-external-LSAs are flooded throughout the entire Autonomous System, excepting stub areas (see Section 3.6). Each separate LSA type is briefly described below in Table 15.
12.1.4. Link State ID
This field identifies the piece of the routing domain that is being described by the LSA. Depending on the LSA's LS type, the Link State ID takes on the values listed in Table
LS Type LSA description
1 These are the router-LSAs. They describe the collected states of the router's interfaces. For more information, consult Section 12.4.1.
2 These are the network-LSAs. They describe the set of routers attached to the network. For more information, consult Section 12.4.2.
3 or 4 These are the summary-LSAs. They describe inter-area routes, and enable the condensation of routing information at area borders. Originated by area border routers, the Type 3 summary-LSAs describe routes to networks while the Type 4 summary-LSAs describe routes to AS boundary routers.
5 These are the AS-external-LSAs. Originated by AS boundary routers, they describe routes to destinations external to the Autonomous System. A default route for the Autonomous System can also be described by an AS-external-LSA.
Table 15: OSPF link state advertisements (LSAs).
Actually, for Type 3 summary-LSAs (LS type = 3) and AS- external-LSAs (LS type = 5), the Link State ID may
LS Type Link State ID
1 The originating router's Router ID. 2 The IP interface address of the network's Designated Router. 3 The destination network's IP address. 4 The Router ID of the described AS boundary router. 5 The destination network's IP address.
Table 16: The LSA's Link State ID.
additionally have one or more of the destination network's "host" bits set. For example, when originating an AS- external-LSA for the network 10.0.0.0 with mask of 255.0.0.0, the Link State ID can be set to anything in the range 10.0.0.0 through 10.255.255.255 inclusive (although 10.0.0.0 should be used whenever possible). The freedom to set certain host bits allows a router to originate separate LSAs for two networks having the same address but different masks. See Appendix E for details.
When the LSA is describing a network (LS type = 2, 3 or 5), the network's IP address is easily derived by masking the Link State ID with the network/subnet mask contained in the body of the LSA. When the LSA is describing a router (LS type = 1 or 4), the Link State ID is always the described router's OSPF Router ID.
When an AS-external-LSA (LS Type = 5) is describing a default route, its Link State ID is set to DefaultDestination (0.0.0.0).
12.1.5. Advertising Router
This field specifies the OSPF Router ID of the LSA's originator. For router-LSAs, this field is identical to the Link State ID field. Network-LSAs are originated by the
network's Designated Router. Summary-LSAs originated by area border routers. AS-external-LSAs are originated by AS boundary routers.
12.1.6. LS sequence number
The sequence number field is a signed 32-bit integer. It is used to detect old and duplicate LSAs. The space of sequence numbers is linearly ordered. The larger the sequence number (when compared as signed 32-bit integers) the more recent the LSA. To describe to sequence number space more precisely, let N refer in the discussion below to the constant 2**31.
The sequence number -N (0x80000000) is reserved (and unused). This leaves -N + 1 (0x80000001) as the smallest (and therefore oldest) sequence number; this sequence number is referred to as the constant InitialSequenceNumber. A router uses InitialSequenceNumber the first time it originates any LSA. Afterwards, the LSA's sequence number is incremented each time the router originates a new instance of the LSA. When an attempt is made to increment the sequence number past the maximum value of N - 1 (0x7fffffff; also referred to as MaxSequenceNumber), the current instance of the LSA must first be flushed from the routing domain. This is done by prematurely aging the LSA (see Section 14.1) and reflooding it. As soon as this flood has been acknowledged by all adjacent neighbors, a new instance can be originated with sequence number of InitialSequenceNumber.
The router may be forced to promote the sequence number of one of its LSAs when a more recent instance of the LSA is unexpectedly received during the flooding process. This should be a rare event. This may indicate that an out-of- date LSA, originated by the router itself before its last restart/reload, still exists in the Autonomous System. For more information see Section 13.4.
12.1.7. LS checksum
This field is the checksum of the complete contents of the LSA, excepting the LS age field. The LS age field is excepted so that an LSA's age can be incremented without updating the checksum. The checksum used is the same that is used for ISO connectionless datagrams; it is commonly referred to as the Fletcher checksum. It is documented in Annex B of [Ref6]. The LSA header also contains the length of the LSA in bytes; subtracting the size of the LS age field (two bytes) yields the amount of data to checksum.
The checksum is used to detect data corruption of an LSA. This corruption can occur while an LSA is being flooded, or while it is being held in a router's memory. The LS checksum field cannot take on the value of zero; the occurrence of such a value should be considered a checksum failure. In other words, calculation of the checksum is not optional.
The checksum of an LSA is verified in two cases: a) when it is received in a Link State Update Packet and b) at times during the aging of the link state database. The detection of a checksum failure leads to separate actions in each case. See Sections 13 and 14 for more details.
Whenever the LS sequence number field indicates that two instances of an LSA are the same, the LS checksum field is examined. If there is a difference, the instance with the larger LS checksum is considered to be most recent.[13] See Section 13.1 for more details.
12.2. The link state database
A router has a separate link state database for every area to which it belongs. All routers belonging to the same area have identical link state databases for the area.
The databases for each individual area are always dealt with separately. The shortest path calculation is performed separately for each area (see Section 16). Components of the
area link-state database are flooded throughout the area only. Finally, when an adjacency (belonging to Area A) is being brought up, only the database for Area A is synchronized between the two routers.
The area database is composed of router-LSAs, network-LSAs and summary-LSAs (all listed in the area data structure). In addition, external routes (AS-external-LSAs) are included in all non-stub area databases (see Section 3.6).
An implementation of OSPF must be able to access individual pieces of an area database. This lookup function is based on an LSA's LS type, Link State ID and Advertising Router.[14] There will be a single instance (the most up-to-date) of each LSA in the database. The database lookup function is invoked during the LSA flooding procedure (Section 13) and the routing table calculation (Section 16). In addition, using this lookup function the router can determine whether it has itself ever originated a particular LSA, and if so, with what LS sequence number.
An LSA is added to a router's database when either a) it is received during the flooding process (Section 13) or b) it is originated by the router itself (Section 12.4). An LSA is deleted from a router's database when either a) it has been overwritten by a newer instance during the flooding process (Section 13) or b) the router originates a newer instance of one of its self-originated LSAs (Section 12.4) or c) the LSA ages out and is flushed from the routing domain (Section 14). Whenever an LSA is deleted from the database it must also be removed from all neighbors' Link state retransmission lists (see Section 10).
12.3. Representation of TOS
For backward compatibility with previous versions of the OSPF specification ([Ref9]), TOS-specific information can be included in router-LSAs, summary-LSAs and AS-external-LSAs. The encoding of TOS in OSPF LSAs is specified in Table 17. That table relates the OSPF encoding to the IP packet header's TOS field (defined in [Ref12]). The OSPF encoding is expressed as a decimal
integer, and the IP packet header's TOS field is expressed in the binary TOS values used in [Ref12].
OSPF encoding RFC 1349 TOS values
0 0000 normal service 2 0001 minimize monetary cost 4 0010 maximize reliability 6 0011 8 0100 maximize throughput 10 0101 12 0110 14 0111 16 1000 minimize delay 18 1001 20 1010 22 1011 24 1100 26 1101 28 1110 30 1111
Table 17: Representing TOS in OSPF.
12.4. Originating LSAs
Into any given OSPF area, a router will originate several LSAs. Each router originates a router-LSA. If the router is also the Designated Router for any of the area's networks, it will originate network-LSAs for those networks.
Area border routers originate a single summary-LSA for each known inter-area destination. AS boundary routers originate a single AS-external-LSA for each known AS external destination. Destinations are advertised one at a time so that the change in any single route can be flooded without reflooding the entire collection of routes. During the flooding procedure, many LSAs can be carried by a single Link State Update packet.
As an example, consider Router RT4 in Figure 6. It is an area border router, having a connection to Area 1 and the backbone. Router RT4 originates 5 distinct LSAs into the backbone (one router-LSA, and one summary-LSA for each of the networks N1-N4). Router RT4 will also originate 8 distinct LSAs into Area 1 (one router-LSA and seven summary-LSAs as pictured in Figure 7). If RT4 has been selected as Designated Router for Network N3, it will also originate a network-LSA for N3 into Area 1.
In this same figure, Router RT5 will be originating 3 distinct AS-external-LSAs (one for each of the networks N12-N14). These will be flooded throughout the entire AS, assuming that none of the areas have been configured as stubs. However, if area 3 has been configured as a stub area, the AS-external-LSAs for networks N12-N14 will not be flooded into area 3 (see Section 3.6). Instead, Router RT11 would originate a default summary- LSA that would be flooded throughout area 3 (see Section 12.4.3). This instructs all of area 3's internal routers to send their AS external traffic to RT11.
Whenever a new instance of an LSA is originated, its LS sequence number is incremented, its LS age is set to 0, its LS checksum is calculated, and the LSA is added to the link state database and flooded out the appropriate interfaces. See Section 13.2 for details concerning the installation of the LSA into the link state database. See Section 13.3 for details concerning the flooding of newly originated LSAs.
The ten events that can cause a new instance of an LSA to be originated are:
(1) The LS age field of one of the router's self-originated LSAs reaches the value LSRefreshTime. In this case, a new instance of the LSA is originated, even though the contents of the LSA (apart from the LSA header) will be the same. This guarantees periodic originations of all LSAs. This periodic updating of LSAs adds robustness to the link state algorithm. LSAs that solely describe unreachable destinations should not be refreshed, but should instead be flushed from the routing domain (see Section 14.1).
When whatever is being described by an LSA changes, a new LSA is originated. However, two instances of the same LSA may not be originated within the time period MinLSInterval. This may require that the generation of the next instance be delayed by up to MinLSInterval. The following events may cause the contents of an LSA to change. These events should cause new originations if and only if the contents of the new LSA would be different:
(2) An interface's state changes (see Section 9.1). This may mean that it is necessary to produce a new instance of the router-LSA.
(3) An attached network's Designated Router changes. A new router-LSA should be originated. Also, if the router itself is now the Designated Router, a new network-LSA should be produced. If the router itself is no longer the Designated Router, any network-LSA that it might have originated for the network should be flushed from the routing domain (see Section 14.1).
(4) One of the neighboring routers changes to/from the FULL state. This may mean that it is necessary to produce a new instance of the router-LSA. Also, if the router is itself the Designated Router for the attached network, a new network-LSA should be produced.
The next four events concern area border routers only:
(5) An intra-area route has been added/deleted/modified in the routing table. This may cause a new instance of a summary- LSA (for this route) to be originated in each attached area (possibly including the backbone).
(6) An inter-area route has been added/deleted/modified in the routing table. This may cause a new instance of a summary- LSA (for this route) to be originated in each attached area (but NEVER for the backbone).
(7) The router becomes newly attached to an area. The router must then originate summary-LSAs into the newly attached area for all pertinent intra-area and inter-area routes in the router's routing table. See Section 12.4.3 for more details.
(8) When the state of one of the router's configured virtual links changes, it may be necessary to originate a new router-LSA into the virtual link's Transit area (see the discussion of the router-LSA's bit V in Section 12.4.1), as well as originating a new router-LSA into the backbone.
The last two events concern AS boundary routers (and former AS boundary routers) only:
(9) An external route gained through direct experience with an external routing protocol (like BGP) changes. This will cause an AS boundary router to originate a new instance of an AS-external-LSA.
(10) A router ceases to be an AS boundary router, perhaps after restarting. In this situation the router should flush all AS-external-LSAs that it had previously originated. These LSAs can be flushed via the premature aging procedure specified in Section 14.1.
The construction of each type of LSA is explained in detail below. In general, these sections describe the contents of the LSA body (i.e., the part coming after the 20-byte LSA header). For information concerning the building of the LSA header, see Section 12.1.
12.4.1. Router-LSAs
A router originates a router-LSA for each area that it belongs to. Such an LSA describes the collected states of the router's links to the area. The LSA is flooded throughout the particular area, and no further.
.................................... . 192.1.2 Area 1 . . + . . | . . | 3+---+1 . . N1 |--|RT1|-----+ . . | +---+ \ . . | \ _____N3 . . + / \ . 1+---+ . * 192.1.1 *------|RT4| . + /_____/ . +---+ . | / | . . | 3+---+1 / | . . N2 |--|RT2|-----+ 1| . . | +---+ +---+8 . 6+---+ . | |RT3|----------------|RT6| . + +---+ . +---+ . 192.1.3 |2 . 18.10.0.6|7 . | . | . +------------+ . . 192.1.4 (N4) . ....................................
Figure 15: Area 1 with IP addresses shown
The format of a router-LSA is shown in Appendix A (Section A.4.2). The first 20 bytes of the LSA consist of the generic LSA header that was discussed in Section 12.1. router-LSAs have LS type = 1.
A router also indicates whether it is an area border router, or an AS boundary router, by setting the appropriate bits (bit B and bit E, respectively) in its router-LSAs. This enables paths to those types of routers to be saved in the routing table, for later processing of summary-LSAs and AS- external-LSAs. Bit B should be set whenever the router is actively attached to two or more areas, even if the router is not currently attached to the OSPF backbone area. Bit E should never be set in a router-LSA for a stub area (stub areas cannot contain AS boundary routers).
In addition, the router sets bit V in its router-LSA for Area A if and only if the router is the endpoint of one or more fully adjacent virtual links having Area A as their Transit area. The setting of bit V enables other routers in Area A to discover whether the area supports transit traffic (see TransitCapability in Section 6).
The router-LSA then describes the router's working connections (i.e., interfaces or links) to the area. Each link is typed according to the kind of attached network. Each link is also labelled with its Link ID. This Link ID gives a name to the entity that is on the other end of the link. Table 18 summarizes the values used for the Type and Link ID fields.
Link type Description Link ID
1 Point-to-point Neighbor Router ID link 2 Link to transit Interface address of network Designated Router 3 Link to stub IP network number network 4 Virtual link Neighbor Router ID
Table 18: Link descriptions in the router-LSA.
In addition, the Link Data field is specified for each link. This field gives 32 bits of extra information for the link. For links to transit networks, numbered point-to-point links and virtual links, this field specifies the IP interface address of the associated router interface (this is needed by the routing table calculation, see Section 16.1.1). For links to stub networks, this field specifies the stub network's IP address mask. For unnumbered point-to-point links, the Link Data field should be set to the unnumbered interface's MIB-II [Ref8] ifIndex value.
Finally, the cost of using the link for output is specified. The output cost of a link is configurable. With the exception of links to stub networks, the output cost must always be non-zero.
To further describe the process of building the list of link descriptions, suppose a router wishes to build a router-LSA for Area A. The router examines its collection of interface data structures. For each interface, the following steps are taken:
o If the attached network does not belong to Area A, no links are added to the LSA, and the next interface should be examined.
o If the state of the interface is Down, no links are added.
o If the state of the interface is Loopback, add a Type 3 link (stub network) as long as this is not an interface to an unnumbered point-to-point network. The Link ID should be set to the IP interface address, the Link Data set to the mask 0xffffffff (indicating a host route), and the cost set to 0.
o Otherwise, the link descriptions added to the router-LSA depend on the OSPF interface type. Link descriptions used for point-to-point interfaces are specified in Section 12.4.1.1, for virtual links in Section 12.4.1.2, for broadcast and NBMA interfaces in 12.4.1.3, and for Point-to-MultiPoint interfaces in 12.4.1.4.
After consideration of all the router interfaces, host links are added to the router-LSA by examining the list of attached hosts belonging to Area A. A host route is represented as a Type 3 link (stub network) whose Link ID is the host's IP address, Link Data is the mask of all ones (0xffffffff), and cost the host's configured cost (see Section C.7).
12.4.1.1. Describing point-to-point interfaces
For point-to-point interfaces, one or more link descriptions are added to the router-LSA as follows:
o If the neighboring router is fully adjacent, add a Type 1 link (point-to-point). The Link ID should be set to the Router ID of the neighboring router. For numbered point-to-point networks, the Link Data should specify the IP interface address. For unnumbered point-to-point networks, the Link Data field should specify the interface's MIB-II [Ref8] ifIndex value. The cost should be set to the output cost of the point-to-point interface.
o In addition, as long as the state of the interface is "Point-to-Point" (and regardless of the neighboring router state), a Type 3 link (stub network) should be added. There are two forms that this stub link can take:
Option 1 Assuming that the neighboring router's IP address is known, set the Link ID of the Type 3 link to the neighbor's IP address, the Link Data to the mask 0xffffffff (indicating a host route), and the cost to the interface's configured output cost.[15]
Option 2 If a subnet has been assigned to the point-to- point link, set the Link ID of the Type 3 link to the subnet's IP address, the Link Data to the subnet's mask, and the cost to the interface's configured output cost.[16]
12.4.1.2. Describing broadcast and NBMA interfaces
For operational broadcast and NBMA interfaces, a single link description is added to the router-LSA as follows:
o If the state of the interface is Waiting, add a Type 3 link (stub network) with Link ID set to the IP network number of the attached network, Link Data set to the attached network's address mask, and cost equal to the interface's configured output cost.
o Else, there has been a Designated Router elected for the attached network. If the router is fully adjacent to the Designated Router, or if the router itself is Designated Router and is fully adjacent to at least one other router, add a single Type 2 link (transit network) with Link ID set to the IP interface address of the attached network's Designated Router (which may be the router itself), Link Data set to the router's own IP interface address, and cost equal to the interface's configured output cost. Otherwise, add a link as if the interface state were Waiting (see above).
12.4.1.3. Describing virtual links
For virtual links, a link description is added to the router-LSA only when the virtual neighbor is fully adjacent. In this case, add a Type 4 link (virtual link) with Link ID set to the Router ID of the virtual neighbor, Link Data set to the IP interface address associated with the virtual link and cost set to the cost calculated for the virtual link during the routing table calculation (see Section 15).
12.4.1.4. Describing Point-to-MultiPoint interfaces
For operational Point-to-MultiPoint interfaces, one or more link descriptions are added to the router-LSA as follows:
o A single Type 3 link (stub network) is added with Link ID set to the router's own IP interface address, Link Data set to the mask 0xffffffff (indicating a host route), and cost set to 0.
o For each fully adjacent neighbor associated with the interface, add an additional Type 1 link (point-to- point) with Link ID set to the Router ID of the neighboring router, Link Data set to the IP interface address and cost equal to the interface's configured output cost.
12.4.1.5. Examples of router-LSAs
Consider the router-LSAs generated by Router RT3, as pictured in Figure 6. The area containing Router RT3 (Area 1) has been redrawn, with actual network addresses, in Figure 15. Assume that the last byte of all of RT3's interface addresses is 3, giving it the interface addresses 192.1.1.3 and 192.1.4.3, and that the other routers have similar addressing schemes. In addition, assume that all links are functional, and that Router IDs are assigned as the smallest IP interface address.
RT3 originates two router-LSAs, one for Area 1 and one for the backbone. Assume that Router RT4 has been selected as the Designated router for network 192.1.1.0. RT3's router-LSA for Area 1 is then shown below. It indicates that RT3 has two connections to Area 1, the first a link to the transit network 192.1.1.0 and the second a link to the stub network 192.1.4.0. Note that the transit network is identified by the IP interface of its Designated Router (i.e., the Link ID = 192.1.1.4 which is the Designated Router RT4's IP interface to 192.1.1.0). Note also that RT3 has indicated that it is an area border router.
; RT3's router-LSA for Area 1
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 1 ;indicates router-LSA Link State ID = 192.1.1.3 ;RT3's Router ID Advertising Router = 192.1.1.3 ;RT3's Router ID bit E = 0 ;not an AS boundary router
bit B = 1 ;area border router #links = 2 Link ID = 192.1.1.4 ;IP address of Desig. Rtr. Link Data = 192.1.1.3 ;RT3's IP interface to net Type = 2 ;connects to transit network
TOS metrics = 0
metric = 1
Link ID = 192.1.4.0 ;IP Network number Link Data = 0xffffff00 ;Network mask Type = 3 ;connects to stub network
TOS metrics = 0
metric = 2
Next RT3's router-LSA for the backbone is shown. It indicates that RT3 has a single attachment to the backbone. This attachment is via an unnumbered point-to-point link to Router RT6. RT3 has again indicated that it is an area border router.
; RT3's router-LSA for the backbone
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 1 ;indicates router-LSA Link State ID = 192.1.1.3 ;RT3's router ID Advertising Router = 192.1.1.3 ;RT3's router ID bit E = 0 ;not an AS boundary router bit B = 1 ;area border router #links = 1 Link ID = 18.10.0.6 ;Neighbor's Router ID Link Data = 0.0.0.3 ;MIB-II ifIndex of P-P link Type = 1 ;connects to router
TOS metrics = 0
metric = 8
12.4.2. Network-LSAs
A network-LSA is generated for every transit broadcast or NBMA network. (A transit network is a network having two or more attached routers). The network-LSA describes all the routers that are attached to the network.
The Designated Router for the network originates the LSA. The Designated Router originates the LSA only if it is fully adjacent to at least one other router on the network. The network-LSA is flooded throughout the area that contains the transit network, and no further. The network-LSA lists those routers that are fully adjacent to the Designated Router; each fully adjacent router is identified by its OSPF Router ID. The Designated Router includes itself in this list.
The Link State ID for a network-LSA is the IP interface address of the Designated Router. This value, masked by the network's address mask (which is also contained in the network-LSA) yields the network's IP address.
A router that has formerly been the Designated Router for a network, but is no longer, should flush the network-LSA that it had previously originated. This LSA is no longer used in the routing table calculation. It is flushed by prematurely incrementing the LSA's age to MaxAge and reflooding (see Section 14.1). In addition, in those rare cases where a router's Router ID has changed, any network-LSAs that were originated with the router's previous Router ID must be flushed. Since the router may have no idea what it's previous Router ID might have been, these network-LSAs are indicated by having their Link State ID equal to one of the router's IP interface addresses and their Advertising Router equal to some value other than the router's current Router ID (see Section 13.4 for more details).
12.4.2.1. Examples of network-LSAs
Again consider the area configuration in Figure 6. Network-LSAs are originated for Network N3 in Area 1, Networks N6 and N8 in Area 2, and Network N9 in Area 3. Assuming that Router RT4 has been selected as the Designated Router for Network N3, the following network-LSA is generated by RT4 on behalf of Network N3 (see Figure 15 for the address assignments):
; Network-LSA for Network N3
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 2 ;indicates network-LSA Link State ID = 192.1.1.4 ;IP address of Desig. Rtr. Advertising Router = 192.1.1.4 ;RT4's Router ID Network Mask = 0xffffff00 Attached Router = 192.1.1.4 ;Router ID Attached Router = 192.1.1.1 ;Router ID Attached Router = 192.1.1.2 ;Router ID Attached Router = 192.1.1.3 ;Router ID
12.4.3. Summary-LSAs
The destination described by a summary-LSA is either an IP network, an AS boundary router or a range of IP addresses. Summary-LSAs are flooded throughout a single area only. The destination described is one that is external to the area, yet still belongs to the Autonomous System.
Summary-LSAs are originated by area border routers. The precise summary routes to advertise into an area are determined by examining the routing table structure (see Section 11) in accordance with the algorithm described below. Note that only intra-area routes are advertised into the backbone, while both intra-area and inter-area routes are advertised into the other areas.
To determine which routes to advertise into an attached Area A, each routing table entry is processed as follows. Remember that each routing table entry describes a set of equal-cost best paths to a particular destination:
o Only Destination Types of network and AS boundary router are advertised in summary-LSAs. If the routing table entry's Destination Type is area border router, examine the next routing table entry.
o AS external routes are never advertised in summary-LSAs. If the routing table entry has Path-type of type 1 external or type 2 external, examine the next routing table entry.
o Else, if the area associated with this set of paths is the Area A itself, do not generate a summary-LSA for the route.[17]
o Else, if the next hops associated with this set of paths belong to Area A itself, do not generate a summary-LSA for the route.[18] This is the logical equivalent of a Distance Vector protocol's split horizon logic.
o Else, if the routing table cost equals or exceeds the value LSInfinity, a summary-LSA cannot be generated for this route.
o Else, if the destination of this route is an AS boundary router, a summary-LSA should be originated if and only if the routing table entry describes the preferred path to the AS boundary router (see Step 3 of Section 16.4). If so, a Type 4 summary-LSA is originated for the destination, with Link State ID equal to the AS boundary router's Router ID and metric equal to the routing table entry's cost. Note: these LSAs should not be generated if Area A has been configured as a stub area.
o Else, the Destination type is network. If this is an inter-area route, generate a Type 3 summary-LSA for the destination, with Link State ID equal to the network's address (if necessary, the Link State ID can also have one or more of the network's host bits set; see Appendix E for details) and metric equal to the routing table cost.
o The one remaining case is an intra-area route to a network. This means that the network is contained in one of the router's directly attached areas. In general, this information must be condensed before appearing in summary-LSAs. Remember that an area has a configured list of address ranges, each range consisting of an [address,mask] pair and a status indication of either Advertise or DoNotAdvertise. At most a single Type 3 summary-LSA is originated for each range. When the range's status indicates Advertise, a Type 3 summary-LSA is generated with Link State ID equal to the
range's address (if necessary, the Link State ID can also have one or more of the range's "host" bits set; see Appendix E for details) and cost equal to the largest cost of any of the component networks. When the range's status indicates DoNotAdvertise, the Type 3 summary-LSA is suppressed and the component networks remain hidden from other areas.
By default, if a network is not contained in any explicitly configured address range, a Type 3 summary- LSA is generated with Link State ID equal to the network's address (if necessary, the Link State ID can also have one or more of the network's "host" bits set; see Appendix E for details) and metric equal to the network's routing table cost.
If an area is capable of carrying transit traffic (i.e., its TransitCapability is set to TRUE), routing information concerning backbone networks should not be condensed before being summarized into the area. Nor should the advertisement of backbone networks into transit areas be suppressed. In other words, the backbone's configured ranges should be ignored when originating summary-LSAs into transit areas.
If a router advertises a summary-LSA for a destination which then becomes unreachable, the router must then flush the LSA from the routing domain by setting its age to MaxAge and reflooding (see Section 14.1). Also, if the destination is still reachable, yet can no longer be advertised according to the above procedure (e.g., it is now an inter-area route, when it used to be an intra-area route associated with some non-backbone area; it would thus no longer be advertisable to the backbone), the LSA should also be flushed from the routing domain.
12.4.3.1. Originating summary-LSAs into stub areas
The algorithm in Section 12.4.3 is optional when Area A is an OSPF stub area. Area border routers connecting to a stub area can originate summary-LSAs into the area
according to the Section 12.4.3's algorithm, or can choose to originate only a subset of the summary-LSAs, possibly under configuration control. The fewer LSAs originated, the smaller the stub area's link state database, further reducing the demands on its routers' resources. However, omitting LSAs may also lead to sub- optimal inter-area routing, although routing will continue to function.
As specified in Section 12.4.3, Type 4 summary-LSAs (ASBR-summary-LSAs) are never originated into stub areas.
In a stub area, instead of importing external routes each area border router originates a "default summary- LSA" into the area. The Link State ID for the default summary-LSA is set to DefaultDestination, and the metric set to the (per-area) configurable parameter StubDefaultCost. Note that StubDefaultCost need not be configured identically in all of the stub area's area border routers.
12.4.3.2. Examples of summary-LSAs
Consider again the area configuration in Figure 6. Routers RT3, RT4, RT7, RT10 and RT11 are all area border routers, and therefore are originating summary-LSAs. Consider in particular Router RT4. Its routing table was calculated as the example in Section 11.3. RT4 originates summary-LSAs into both the backbone and Area
- Into the backbone, Router RT4 originates separate LSAs for each of the networks N1-N4. Into Area 1, Router RT4 originates separate LSAs for networks N6-N8 and the AS boundary routers RT5,RT7. It also condenses host routes Ia and Ib into a single summary-LSA. Finally, the routes to networks N9,N10,N11 and Host H1 are advertised by a single summary-LSA. This condensation was originally performed by the router RT11.
These LSAs are illustrated graphically in Figures 7 and 8. Two of the summary-LSAs originated by Router RT4 follow. The actual IP addresses for the networks and routers in question have been assigned in Figure 15.
; Summary-LSA for Network N1, ; originated by Router RT4 into the backbone
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 3 ;Type 3 summary-LSA Link State ID = 192.1.2.0 ;N1's IP network number Advertising Router = 192.1.1.4 ;RT4's ID metric = 4
; Summary-LSA for AS boundary router RT7 ; originated by Router RT4 into Area 1
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 4 ;Type 4 summary-LSA Link State ID = Router RT7's ID Advertising Router = 192.1.1.4 ;RT4's ID metric = 14
12.4.4. AS-external-LSAs
AS-external-LSAs describe routes to destinations external to the Autonomous System. Most AS-external-LSAs describe routes to specific external destinations; in these cases the LSA's Link State ID is set to the destination network's IP address (if necessary, the Link State ID can also have one or more of the network's "host" bits set; see Appendix E for details). However, a default route for the Autonomous System can be described in an AS-external-LSA by setting the LSA's Link State ID to DefaultDestination (0.0.0.0). AS- external-LSAs are originated by AS boundary routers. An AS boundary router originates a single AS-external-LSA for each external route that it has learned, either through another routing protocol (such as BGP), or through configuration information.
AS-external-LSAs are the only type of LSAs that are flooded throughout the entire Autonomous System; all other types of LSAs are specific to a single area. However, AS-external- LSAs are not flooded into/throughout stub areas (see Section 3.6). This enables a reduction in link state database size for routers internal to stub areas.
The metric that is advertised for an external route can be one of two types. Type 1 metrics are comparable to the link state metric. Type 2 metrics are assumed to be larger than the cost of any intra-AS path.
If a router advertises an AS-external-LSA for a destination which then becomes unreachable, the router must then flush the LSA from the routing domain by setting its age to MaxAge and reflooding (see Section 14.1).
12.4.4.1. Examples of AS-external-LSAs
Consider once again the AS pictured in Figure 6. There are two AS boundary routers: RT5 and RT7. Router RT5 originates three AS-external-LSAs, for networks N12-N14. Router RT7 originates two AS-external-LSAs, for networks N12 and N15. Assume that RT7 has learned its route to N12 via BGP, and that it wishes to advertise a Type 2 metric to the AS. RT7 would then originate the following LSA for N12:
; AS-external-LSA for Network N12, ; originated by Router RT7
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 5 ;AS-external-LSA Link State ID = N12's IP network number Advertising Router = Router RT7's ID bit E = 1 ;Type 2 metric metric = 2 Forwarding address = 0.0.0.0
In the above example, the forwarding address field has been set to 0.0.0.0, indicating that packets for the external destination should be forwarded to the advertising OSPF router (RT7). This is not always desirable. Consider the example pictured in Figure 16. There are three OSPF routers (RTA, RTB and RTC) connected to a common network. Only one of these routers, RTA, is exchanging BGP information with the non-OSPF router RTX. RTA must then originate AS- external-LSAs for those destinations it has learned from RTX. By using the AS-external-LSA's forwarding address field, RTA can specify that packets for these destinations be forwarded directly to RTX. Without this feature, Routers RTB and RTC would take an extra hop to get to these destinations.
Note that when the forwarding address field is non- zero, it should point to a router belonging to another Autonomous System.
A forwarding address can also be specified for the default route. For example, in figure 16 RTA may want to specify that all externally-destined packets should by default be forwarded to its BGP peer RTX. The resulting AS-external-LSA is pictured below. Note that the Link State ID is set to DefaultDestination.
; Default route, originated by Router RTA ; Packets forwarded through RTX
LS age = 0 ;always true on origination Options = (E-bit) ; LS type = 5 ;AS-external-LSA Link State ID = DefaultDestination ; default route Advertising Router = Router RTA's ID bit E = 1 ;Type 2 metric metric = 1 Forwarding address = RTX's IP address
In figure 16, suppose instead that both RTA and RTB exchange BGP information with RTX. In this case,
RTA and RTB would originate the same set of AS- external-LSAs. These LSAs, if they specify the same metric, would be functionally equivalent since they would specify the same destination and forwarding address (RTX). This leads to a clear duplication of effort. If only one of RTA or RTB originated the set of AS-external-LSAs, the routing would remain the same, and the size of the link state database would decrease. However, it must be unambiguously defined as to which router originates the LSAs (otherwise neither may, or the identity of the originator may oscillate). The following rule is thereby established: if two routers, both reachable from one another, originate functionally equivalent AS-external-LSAs (i.e., same destination, cost and non-zero forwarding address), then the LSA originated by the router having the highest OSPF Router ID is used. The router having the lower OSPF Router ID can then flush its LSA. Flushing an LSA is discussed in Section 14.1.
| +---+.....|.BGP |RTA|-----|.....+---+ +---+ |-----|RTX| | +---+ +---+ | |RTB|-----| +---+ | | +---+ | |RTC|-----| +---+ | | +
Figure 16: Forwarding address example